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ACOUSTIC WAVE REFLECTION IN THE SUBCRITICAL

SECTION OF A LAVAL NOZZLE

N. V. Kokushkin

NOTATION

PN, ON, ThN- Spherical coordinates referred, to the N-th coordinatel

system;

ZN, rN, nN,- Cylindrical coordinates referred to the N-th coordinate

system;

- Acoustic potential;

v' = grad P' - Vector of acoustic velocity;

vb0  - Vector of stationary velocity;

c - Speed of sound;

t - Time;

w - Circular frequency;

m - Mode of wave components;

M - Mach number;
d

j - Sequence of roots of equation -- Jm(.jr)=o when r = rc

(rc - radius of cylindrical section of-chambeir);'

d
nj - Sequence of roots of equation .- 'P,!(cose)=O0 when

6= eo
(eo  - Angle of opening of nozzle conical section).

Numbers in margin indicate pagination in original foreign text.
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In a study of the high frequency ("acoustic") instability of

the operational process] in combustion chambers of different types,

the nec.ssity arises of determining the reflection of acoustic waves

from the subcritical section of supersonic nozzles.

Several works have investigated this phenomenon [1-7].

An attempt is made in [1-31 to determine the acoustic impedance

of the nozzle by solving an ordinary linear differential equation

of the second order with variable coefficients, describing the

propagation of plane acoustic waves in a flow, whosevelocity

changes along the coordinate (one-dimensional and linear 
formula-

tion of the problem).

Thus, the authors have investigated the propagation of plane

[1-3] and three-dimensional [4, 5] acoustic waves in a cylindrical

tube under the condition of a given change in the axial stationary/119

velocity component of the flow.

With this formulation of the problem, the effect of

reflection is determined only by an inhomogeneity of the

stationary flow. It is thus impossible to take into consideration

the reflection directly from the walls of the nozzle contracting

section.

This article proposes a method for solving the problem of

the reflection of acoustic waves from the nozzle subcritical

section. A real nozzle is replaced by a certain model of a nozzle

made up of conical sections of "zones" (Figure 1). Each of

these zones coincides with a certain section of the flow in a

conical channel having the same angle of contraction.

It is assumed that the direction of the velocity of the

stationary flow is opposite to the direction of the radius vector

PN of spherical coordinates. It is assumed that the magnitude of
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the stationary flow velocity is given; however, its values must

not depend on the angular coordinate 0N.

Under these conditions, it is possible to obtain particular

solutions of the equation of the acoustic potential in the normal

form, i.e., in the form of the product of the functions, each of

which depends only on one of the independent variables of the

curvilinear coordinates and time.

The general solution for the conical channel is obtained by

summing the particular solutions of such a type [8]. The

acoustic field in the model of the subcritical nozzle section

(Figure 1) is composed of sections of the solutions for the

corresponding conical channels. A system of algebraic equations,

which connects the amplitudes of the waves incident on the nozzle

with the reflected wavesis obtained from the condition that the

values of these solutions and their derivatives coincide at the

boundaries of the zones. The matrix of the coefficients of this

system is the desired characteristic of the reflective properties

of the nozzle. It is a generalization of the amplitude reflection

coefficient known from acoustics [8]. This method may be

developed for nozzles with a smooth change in the contour of the

suberitical section.

The solutions of the equation of the acoustic potential

V2'--- +t- + [2(voV')]+ [vo grad(vov') + (v' grad =0\

in the case when the dependence on time may be taken into account

by the factor e' have tneform

c i sin ) (1)

X CV2~jximj (x -F ('rX mj (xl 'm (fr)



Figure 1. Diagram of subcritical nozzle sections.

in cylindrical systems of coordinates (when N = 1 and N = N* +1)

and

"' s (C1, cos ' + ci , sin rnil) x

/120

x [C( ' R ,Rimj(p) + C.(N), 2  (P)] P (O,,)

in spherical coordinate systems( N=2,...,Nf ).

Here X,.(x)\ and X,,(x)] reflect the dependence of the acoustic

potential on the x coordinate for incident and reflected waves

in a cylindrical channel..

Thus R,,j(p)\are regular, when M = 1 and R2,(p) are irregular

solutions of Equation (8), given below.

The requirement that the acoustic potential and its derivative

be equal, which are described in coordinate systems of conical

flows as applied to two adjacent zones (N-th andjN+1-th), gives

the following relationship for each individual mode of

oscillations (m) at the "input" boundary of the(N+l)th zone

a(PNaPN+1 = ,,+lap N+, N = , 2,..., N. (3)
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It must be noted that no conditions are imposed on the

values of the stationary fT6w velocity vector close to the sur-

face of the solutions which are combined, and the velocity on

both sides of this surface may differ in terms of magnitude and

direction. As the calculations and special determinations have

shown, small inaccuracies in the picture of the stationary flow

have no great influence upon the parameters of the acoustic field.

When the solutions are "combined", the relationship is used

between the coordinates (PN' ON' fN ) and (pNv+,, e, -)v+ in two

adjacent zones, obtained from purely geometric considerations

sin (.1 - ON 41)
PN PN+i

N+1 r N,+1 - PN+1 t, J--t 1+l
arcaug - -"t' k 22 L Axu + sN1

1 r AXN,N+ 1  PNi ,tI -E-On+lO = ON+1 -2 arct g 2+ PY+IN 1=N+1
2x.,.N+i + PN+i 2

in the case of "combining" of the conical region with the

conical and

x ) =xo+px cos Ox,

r(h) =pI sin O,

in the case of "combining" of the cylindrical region of the

combustion chamber with the conical region II (Figure 1).

Multiplying Equation (3) by p,,1 (0) and integrating over the

corresponding interval of the change in the angle O~-o:. 0

and using the conditions of orthogonality of the systems of

:attached spherical LegendrB functions, we obtain a system of

algebraic equations.

It must be assumed that the values of the coefficients C,'J

in the solution (1) when N = 1 in a combustion chamber, which

characterize the amplitudes of the waves incident upon the nozzle,1
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are given, i.e., the system of algebraic equations obtained is an
inhomogeneous system, and the terms containing the factors C(,

form the right hand sides of the equations.

The absence of a singularity for the solution close to the

critical nozzle section is expressed by the condition

C , = 0 at N - N" + L.

All the remaining values of C must be defined, including

the values of C.,,I, characterizing the waves reflected from the

nozzle in the cylindrical section of the combustion chamber. /121

Since the field of the acoustic potential in the general

case is expressed by infinite series (1), (2), the system of

algebraic equations obtained will be an infinite system. There-

fore, in actual calculations, we must investigate a certain reduced

system of equations.

The matrix of this system dbes hot depend lon the form of

the waves, incident on the nozzle and is the acoustic characteris-

tic of the nozzle, which may be used when solving the problems of
oscillations and the stability of the operational process in the

combustion chambers.

To obtain complete agreement between the geometric model of

a real nozzle and a smooth change of the contour, in the relation-

ships obtained it is necessary to pass to the limit when N'-oo,
i.e., increasing the number of zones into which the entire flow
field is divided in the subsonic nozzle section.

It must also be required that the length of the zones in the
direction of the radius vector of the spherical coordinates PN uni-

formly strive to zero in the O<x<Linterval and that an unequivocal
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agreement hold between the number of the zone 'N<N'J and a certain

point x")jof the axial coordinate, for example, N=N'(1-x(N)/L)/.

Under these conditions, the sequences of theccorresponding

values - for example,, RR~ y, j ,..., N,., + ) m, ,1j/

and others - will more correctly represent a certain function

of the N- number of the zone and at the limit will change into

continuous functional dependences

R(N , (X(N)),

C(iy -- Cl ( ) etc.

In accordance with this, the series of algebraic equations

with identical values of the index j, indicating the number of the

row in the blocks of the matrix, are transformed into the relation-

ship between the functions of the argument x(N)

Z C1 (x()) Aj (XN)) - C1l (x( ") + Ax(N)) R, (x(N)) +

V

i C ( )) B (x(N)) B- C (x(N) - 2(
(N)) R, A(N)) = R20;.iN)) , O 0, .

A2 Cl (x N )) Ai (xP N)  ) ' (ON (cos) I )

0

where we set

AX(N)= X(N+i) (N),

cos 6

A: v) R j (p , ON) , j (PN, ON) PM (ON (COS) N);
o 

(6)

Bv-= R 2mj (PN ON) P") (PN, ON) P' (ON) d (cos ON)
0
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- arle the coefficients of the expansion in series of the

functions (RceP,"')( and (R2,, .j')/ in powers of/ PnV'" /122

Substituting the expressions

dCj
Czi (x + Ax) - Cli (x) + Ax,

dC,
Cj (x+ A x) C; (2) + d XAx

in (5) and setting

AIj = 1rm AiR 2i' - Avi'R 2i
A. cO (RliH2j' - RljR 2i) Ax

A2., = Iiin A 1Rli'- ARj
ax-o (R2iR' - Roj'Ri) Ax '

li a B,jR2j ' - B,'R2i

Sax-o (R 1,R 2j' - Rl'R ) Ax '
B2i = r B.jR17' - BV,'R 1,

Ax-.o (R 2jR 1 -' - R2'Ri) Ax

where vi/- ,

A1 I (A ,, - Rl,) R2 ,' - (A,,' - RI,') R2 ,

A- R, , limAX-- (Rx,R 2,' - R 1,'RI,) Ax
A2 ,, lim (A,., - R1,) R1,' - (A,,' - .Rx,') Ri.

ex-o (R R,' - R 2,'R.,) Ax
(B,, - R 2,) R,9' - (B,,,,' - R2,') R,

B1 , = lim
AX--o (RxR,,' - Rl,'R.,) Ax

B, lir (B, - B,2,) R1 ' - (B,,' - B2.R,') R1,

ax-o o (R2,Riv' - Rz,,'R,) Ax

where v= , relationships (5) may be transformed into the

following differential equations

dCjjdx - (CvA,d + C2,Bj, ),
,=O

d (C.,A2j + C.,,B 2,,),
v=0

j=0,1,2,...,v.

8



The values of the amplitudes of the waves incident upon)

the nozzle at the input section x = L may be used as the boundary

conditions, and the fact must be taken into account that close to

the critical section, there will be no components expressed by the

functions I+?(1"/, having a singularity in the critical section at

M = , i.e., all C -0 )=

C,j(L) =a,

Cz2 (O) =0,
j=O,1,2,...,v.

Thus, the problem of the reflection of acoustic waves from

the subcritical section of a Laval nozzle is reduced to the solu-

tion of the linear boundary value problem for an infinite system

of differential equations. If we confinel ourselves to an

examination of a finite number of differential equations (v, i ,v)

the linear homogeneous boundary value problem with these, .boundary /123

conditions may lead to the solution (n+1)=2(,v+1)+f1of the Cauchy

problem [9] (n - order of magnitude of the system).

A model consisting of a cylindrical section of the combustion

chamber combined directly with a conical convergent channel is

the simplest variation of the geometric model of a subsonic section

6f the nozzle. If it is assumed that the region of transition

through the speed of sound is close, in terms of its geometric

form, to a spherical segment which "closes" the output from the

convergent channel, then there must be no solutions having a

singularity atlM = 1 in the representation of the acoustic

field in spherical coordinates in the conical section of the nozzle:/

c12mj = 0.

An examination of this problem is interesting, due to the

fact that it makes it possible to determine the effect of reflection

from a single "bend" of the reflecting rigid shell of the

chamber - the nozzle, and in this sense it characterizes one of
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the elements comprising the geometric model of the nozzle of a

more complex form. In addition, the results obtained in the

solution of this problem satisfactorily coincide with the

known experimental data, and therefore they are of practical

importance.

In this case the system of equations has the form

v u C2rom z o(I) .X(I) C I Xt imv AIj
v=O v=O

S a (7)

So,1,2,...,v

In the calculations, it is advantageous to study the

effect of reflection for each of the wave components of the

inciden wave individually. This means that only one of the

values C mv differs from zero. If the given component has the

index v=vX , we may set C1X). , = 1, CIj.1 01 for v = T.

The coefficients A(lI and • in the right side of the

system (7), are calculated according to the formulas (6). '.The

values of ,R,,Jj and Bvjj are also calculated according to the

formulas (6). The functions R,.j(x)/ and R2mj(x)/ in them have the

following form in this case

kM m+ /, ' - P.1 (1k- M2)

X,, exp i - M" x

This is the solution of the equation

X"(1-I M) X' likM + 2M ~) +X (k2 - 2)= 0
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at M = const, which reflects the waves which are incident (X,,j)

and reflected (X2,,j)] in the cylindrical section of the combustion

chamber. The value of k reflects the dimensionless frequency

k = p cr/c, where p cr - spherical radius of the critical section.

The Legandre functions P.j"j may be replaced by the Bessel

functions. /124

The functions III,,,and their derivatives with respect to p

are solutions of the equation

NR"(1-M'2) + -2 M d k +I[~ 1 R=o, (8)

which are regular when p=p cr The dependence of the Mach

number on the spherical coordinate p is assumed to be given.

In the calculations of this study, it is given in the form

Scr . (cr 10

M =m 2  6 p 1 p

i.e., in the form of the first three terms of the expansion

in series of the gas dynamic function q(M) [10]. The values

of the coefficients m i are functions of the adiabatic index.

However, their values must be "corrected" with respect to the

condition mrn=i since

*c r

All of the calculational results given below were obtained

on computers of the BESM-3M and BESM-4 types. The programs

were compiled using the a-translator, with standard programs

and procedures. The duration of a calculation of one variation,

i.e., the calculation of the acoustic field of the nozzle of a

specific geometric form (Pi, eo ), when a certain wave (k,C ) .
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is incident on the nozzle, is 25-30 minutes.

The maximum order of the wave components examined was five

when(v+1==5)which leads to the solution of the system of'

algebraic equations with real coefficients of the 2 0 th order

(the SP-0143 was used).

Amplitude Ic j

0o I n*= I n*= 2 n* = 3 n* = 4 * =5

15 1.0 1,5 0,525268 0,525612 0,525651 0,525662 0,525667
15 3,0 1,5 0,2443 0,24305 0,24236 0,24199 0,24177
15 6,0 1,5 0,05344 0,064826 0,96646 0,06758 0,067404
30 1,0 1,05 0,1055 0,0974 0,_011 0,1003 0,1006
30 1,0 2,0 0.6491 0,65354 0,'653382 0,653414 0,653409
30 1,0 3,0 0,63055 0,62518 0.62335 0,62241 0,62189
30 6,0 1,5 0,05094 0,04321 0:048006 0,04928 0,04949
30 10,0 1,5 0,0366 0,0373 0,0386 0,378 0.0105
45 0,1 1,5 0,56477 0,56478 0,56480 0,56483 0,56481
45 1,0 1,5 0,5324 0,5408 0,5366 0,5377 0,5374
45 3,0 1,5 . 0,3070 0,4295 0,3719 0,3898 0,3844
45 5,0 1,5 0,0616 0,1142 0,1421 0,1315 0,1332
60 1,0 1,5 0,546 0,560 0,541 0,552 0,547
60 3,0 1,5 0,422 0,375 0,354 0,360 0,362
75 0,1 1,5 0,5652 0,5654 0,5648 0,5653 0,5649
75 0,5 1,5 0,567 0,582 0,553 0,584 0,553
93 0,01 1,5 0,56511 0,56514 0,56505 -- -

90 0,001 1,5 0,565104 0,565107 0,565104

* Translator's note: Commas in numbers represent decimal points.

During the calculations, a comparison was made of the

results obtained for different values of n'=v+il. Some of these

values are given in the table. The values are given of the

amplitude of the first wave component of the reflected wave IC lI

(i.e., a "plane" wave) in the case of the incidence on the

nozzle of the first wave component y.v Q(i.e., the "plane" wave)

for different frequencies k and nozzles of differing geometric

form (Pi' 0 ). The data given point to a great ("rapid")

convergence of the C2 1 computational results with an increase

in the number n* of the investigated terms of the series of

expansions (1), (2) at small angles of the conical subsonic

section of the nozzles (the angles 60 = 150, 300, 450).
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Figure-2. Dependence of reflection coefficient for potential
amplitude upon length of subcritical nozzle section at 0o = 300
for different oscillation frequencies k. Plane waves-(m=,'v=0):
- li=0,1; 2 - 1,0; 3 -12,0; 4 -- 3,0; 5 - 4,0; 6 - 5,0; 7 - 10,(

1 2 3 4 5 6 7 8 9 k

Figure 3. Dependence of the C2 1 coefficient modulus of the

potentia-l amplitude of the first wave component of the reflected
wave on the frequency k for nozzles with differing lengths of the
subcritical section (m = 0; v* = 0; 0 = 300):

1- Pi = 2.0; 2- 1.5; 3- 1.25

44

0 1 2 3 ,4 5 6 7 k

Fi-gure 4. Dependence of reflection coefficient modulus for po-
tential amplitude upon the frequency k for nozzles with differing
angles of the subcritical section cone (m = 0; Pi = 1.5; v* = 0):

1- 0]0 = 600; 2- 300; 3- 450; 4-150.
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2 4 6 k

Figure 5. Dependence on frequency of the coefficients C21 and C22

of the amplitudes of the first two wave components of a reflected
wave when a plane wave is incident on the nozzle (C1 = 1; m = 0;
S= 0; o = 300; Pi = 2.0); the arrow indicates thejIcritical

tube frequency._

With an increase in the angle and an increase in the /126

frequency k, the convergence deteriorates. Thus, at eo= 750,900,

the calculations are only possible (at n=-+1=51 ) for very low

frequencies (k = 0.01; 0.001). To increase the accuracy of the

results under these conditions, it is necessary to examine a

larger number of terms in the series.

Figure 2 shows the dependence of the wave component of a

reflected wave on the length of the subsonic nozzle section at

different frequencies and angle of the cone e = 300. A

decrease in the reflection is characteristic with the decrease

in the length of the subsonic section, i.e., with an increase in

the "opening" of the combustion chamber and an increase in the

Mach number at the input to the nozzle

IC ',I-0 , at pi+, cr = 1

The reflection of the "longitudinal" wave also decreases

with an increase in the frequency k.

Figure 3 shows the frequency characteristics of these wave

components for nozzles of differing lengths, and Figure 4 -- for
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nozzles with differing input angles. It can be seen from these

figures that at k-O0the reflection coefficient does not depend

on the geometric form of the subsonic section (angle e ) but

depends on pi, i.e., on the Mach number at the nozzle inlet.

From the physical point of view this can be explained: with a

decrease in the frequency and an increase in the wavelength,

any of the nozzles, except for the dependence on its shape, may be

regarded as a "sudden" decrease in the channel section. With an

increase in the frequency, the reflection coefficient decreases.

The existing characteristic maxima correspond, as a rule, to the

critical values of the frequency

The comparison, shown in Figure 5, af, the amplitudes of

the first ("plane", "longitudinal") wave component of the

reflected wave and the second ("radial") wave component of the

reflected wave, in the case of incidence of "plane" and "longi-

tudinal" waves, shows that as the frequency approaches its

critical value the "radial" component in the reflected wave

greatly exceeds the "longitudinal and plane" component. This

shows that at such frequencies, it is not permissible to examine

the problems of stability of the operational process in the

combustion chamber in the one-dimensional formulation.

There are limited possibilities for comparing the results

of the calculations with experimental data. Out of the experi-

mental investigations on this problem which are known in the

literature, only the experimental conditions used in [2,7] can

be used to make such a comparison. The study [2] measured the

damping decrement of the oscillations a, and the acoustic

quality Q under the conditions of a model combustion chamber (at

one frequency fuo548Hz) in the case of cold air. The ratio of the

15



areas of the critical nozzle-disk section and the pass,-lthrough /127

section of the chamber j = F cr/Fch o I<0/j were varied. The

results are given in the form of the dependence of a on j. Utiliz-

ing the relationship

SE2 1- IC2- c + E Vo
E C a a C I c 1 ca= , =h ,M ,2E I a 2 a

in which the second term expresses the convective output of

acoustic energy, and a- the chamber length, we may express the

amplitude reflection coefficient by the value of a measured in

[2] and the Mach number, which is unequivocally connected with

the parameter j, and j = p cr2/pi 2  Since a very short "nozzle"-

disk was used in the experiments, a comparison must only be made

with the results of calculations atJ)~t-o/. Figure 6 gives such a

comparison.

The data of the experimental study given in [6] pertain to

transverse oscillations (m = 1). On the graphs in this study,

the change of the real and imaginary section of the acoustic

conductivity is extremely contracted along the ordinate axis,

which makes it impossible to perform an objective comparison of

the experimental and theoretical calculations due to the diffi-

culty of accurately computing the data from the graphs [6].

Similar data for plane waves (m=0) are given in [71 in a form

which is more advantageous for processing: the scale along the

ordinate axis is increased by one order of magnitude.

Figure 7, a and b gives a comparison of the values of the

amplitude reflection coefficients for pressure fluctuations

|Rn_-Ii- Ylobtained from data in [7] with the values calculated
I I-- Y I I

according to the proposed method on a computer. Since the fre-

quency of the oscillations in the experiments was small (much

16



J5 e_7

02

Figure 7. a. Comparison of experimental data 1 ]with calcu-

lations (m = 0; Mi = 0.08): 1- experiment; 2- calculation.

b. Comparison of experimental data [9] with calculations (m = 0;

Mi = 0.06): 1- experiment; 2- calculation.

less than the critical frequency of the tube), the form of the

nozzles could have no significant influence upon the reflection

of acoustic waves. Therefore, the comparison was made with a

certain conical nozzle having the same ratio of I the input area

to the critical section area. The relationship between the

theoretically calculated value of !,I:IC,!j and the reflection

coefficient for the pressure amplitude I1I1 is expressed in the /128

case of stationary flow in the case of plane waves by the

relationship

17



CR I -1+MI
I n I 1- IMI'

which may be readily obtained from (1), using the relationship

between the acoustic potential and the acoustic pressure.

CONCLUSIONS

1. The method proposed makes it possible to solve the problem

numerically in general form in a three-dimensional formulation

with a small amount of machine time.

2. The characteristic of the acoustic properties of the nozzle,1

"the reflection matrix",Imay be used as a boundary condition when

solving the problem of fluctuations in the combustion chamber in

the case of composite multicomponent acoustic fields.

3. The basic relationships obtained for the reflection from

the subcritical section of conical nozzles (dependence of

reflection on the Mach number at the nozzle input, angle of

contraction of the conical section, frequency characteristics)

show that a) At low frequencies of oscillations, the form of the

subcritical section of the nozzle has no great influence;1

b) The radial components playhan important role in the formation

of the acoustic field when the frequency approaches its critical

value; in this frequency range, the stability problems cannot be

examined in the one-dimensional formulation; c) There is a general

tendency for a decrease in the components of the reflected wave

with an increase in frequency; d) The results of the calculations

are in satisfactory agreement with the known experimental data.
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